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Emerging experimental evidence suggests that both networks and their component neurons respond to similar inputs differently,
depending on the state of network activity. The network state is determined by the intrinsic dynamical structure of the network and may
change as a function of neuromodulation, the balance or stochasticity of synaptic inputs to the network, and the history of network
activity. Much of the knowledge on state-dependent effects comes from comparisons of awake and sleep states of the mammalian brain.
Yet, the mechanisms underlying these states are difficult to unravel. Several vertebrate and invertebrate studies have elucidated cellular
and synaptic mechanisms of state dependence resulting from neuromodulation, sensory input, and experience. Recent studies have
combined modeling and experiments to examine the computational principles that emerge when network state is taken into account;
these studies are highlighted in this article. We discuss these principles in a variety of systems (mammalian, crustacean, and mollusk) to
demonstrate the unifying theme of state dependence of network output.
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Introduction
Classical studies of processing in the CNS have typically assumed
that its networks have relatively fixed input-output relationships.
Many experimental studies now indicate, however, that neuronal
networks respond to inputs differently depending on their state.
The network state is often defined as the state of intrinsic activity
of the network at any time, determined by the structure of the
network’s dynamics and not driven by any specific stimulus
(Fontanini and Katz, 2008). Changes in the network state can
have major effects on the input-output relations of the network’s
individual neurons and, as a consequence, of the whole neuronal
ensemble.

Within the network, the dynamics that produce the network
state are determined by the intrinsic cellular properties of the
neurons and their synaptic connections. These can change as a
result of the network activity on many different time scales, from
milliseconds (e.g., with short-term synaptic plasticity) to days or
months (e.g., with long-term potentiation or depression, changes
in receptor expression). Globally, the properties can be modified
by external neuromodulatory inputs and by higher-order factors
such as behavioral state, attention, and learning (Brunel, 2000;
Destexhe and Marder, 2004; MacLean et al., 2005; Karmarkar and
Dan, 2006).

Because of the dynamic nature of the network state, it is often

unclear how to examine its consequences on neuronal process-
ing. There are simply too many interacting components to be able
to manipulate or even to identify the network state purely exper-
imentally. A number of computational studies, however, have
demonstrated the importance of the network state in determin-
ing the neuronal response (Chance et al., 2002; Fellous et al.,
2003; Prescott and De Koninck, 2003; Destexhe and Contreras,
2006). Here we highlight four recent examples in which a com-
putational approach has been combined with experiments to fur-
ther explore the mechanisms and functional roles of the network
state.

Neuronal responsiveness during stochastic network states
In the awake state, the mammalian thalamus and cerebral cortex
display highly stochastic neuronal activity. This stochasticity can
be observed through various measurement techniques such as
intracellular recordings, local field potentials, electroencephalo-
grams, and optical imaging. For instance, in vivo recordings show
that the membrane potential of individual cortical neurons ex-
hibits considerable fluctuations (“noise”) caused by the activity
of thousands of synapses that converge on the neuron. Recent
results show that such stochastic activity affects information
transfer by neurons and networks.

Traditionally, cellular neurophysiologists have studied the in-
tegrative properties of single neurons by considering them as
isolated entities. It is only relatively recently that it was realized
that the input– output transfer function of neurons is greatly af-
fected by the activity of the surrounding network. An elegant
approach to investigate this is to use the dynamic-clamp tech-
nique to artificially reproduce different levels of stochastic syn-
aptic activity (presumably representing different network states)
by injecting the corresponding computer-generated conductance
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into a living neuron (Destexhe et al., 2001; Chance et al., 2002;
Prescott and De Koninck, 2003; Shu et al., 2003). This approach
was first applied to cortical neurons and revealed an important
effect of the stochastic synaptic activity on the neuron’s respon-
siveness, similar to computational model predictions (Hô and
Destexhe, 2000). Models also predicted that such synaptic activ-
ity may affect the local integrative properties of dendrites (Ru-
dolph and Destexhe, 2003), but this prediction remains to be
tested.

More recently, the same technique was applied to neurons
that display dominant intrinsic properties, such as the burst-
generating thalamic neurons. The transfer function is particu-
larly important in this case, because thalamic neurons relay sen-
sory information to the cortex. Here, too, dramatic effects of
stochastic synaptic activity on responsiveness were found. But, in
this case, the intrinsic properties combine with the stochastic
synaptic activity to yield a specific global responsiveness to inputs
(Wolfart et al., 2005), that is highly dependent on the burst-
generating properties of the thalamic neurons. The bursting oc-
curs more frequently at hyperpolarized potentials. Remarkably,
counting the total number of spikes (occurring both individually
and in bursts) per unit time shows that responsiveness in stochas-
tic conditions is approximately independent of the membrane
potential. The insensitivity to baseline membrane potentials de-
pends on the presence of the T-type calcium current, which re-
sults in bursting in response to hyperpolarization, thus compen-
sating for the expected reduction in spike rate. This is only
possible in the presence of synaptic noise and therefore only oc-
curs in states of intense network activity. This example shows that
the global responsiveness of neurons is fundamentally activity
dependent and must be understood through a combination of
intrinsic properties and stochastic synaptic activity.

At the network level too, experiments have shown that re-
sponsiveness is strongly dependent on network state. Early stud-
ies indicated different types of state-dependent processing ac-
cording to the wake/sleep cycle or the level of attention (for
review, see Steriade, 2003; Destexhe and Contreras, 2006). More
recently, theoretical studies have found strong effects of added
noise on the information processing capabilities of neuronal net-
works. Evidence that the activity of the cerebral cortex shares
statistical properties with stochastic processes such as Poisson-
like spike discharges (Softky and Koch, 1993; Bédard et al., 2006)
provides a biological context to this effect of added noise, imply-
ing that neurons in activated brain states (such as wakefulness)
are indeed embedded in a very noisy environment, and such
network-level effects of noise may actually be more realistic than
previously thought.

In biological networks, noise is mostly internally generated.
Recent theoretical studies have begun to investigate how net-
works of neurons can generate noisy states of activity leading to
stochastic firing patterns in the form of asynchronous irregular
(AI) states. It is unclear whether such AI states present any ad-
vantage for information processing. A complication is that small
model networks can generate AI states that are not in a realistic
conductance state (owing to the limited amount of connectivity,
synapses need to be unrealistically strong), and this excessive
conductance has detrimental effects on information propagation
(El Boustani et al., 2007). More recently, it was shown that AI
states displaying the correct global conductance state require
large networks with diluted connectivity, with many synapses per
neuron, but of small weight (El Boustani et al., 2007; Kumar et al.,
2008b). Such network configurations seem to be better candi-
dates to study information processing, and indeed, such large

networks were recently found to sustain synfire chain propaga-
tion (Kumar et al., 2008a). Because simulation of such large net-
works requires substantial computational resources, these net-
works are more readily implemented on parallel computers.
With the recent advances in measuring the activity of cortical
neurons in awake animals (Göbel et al., 2007; Greenberg et al.,
2008), we anticipate that such network-level studies will become
essential to our understanding of information processing in sto-
chastic network states in the awake and attentive brain.

Neuromodulation of network state
Neuromodulatory substances modify the properties of neurons
and synapses, thereby reconfiguring networks and altering their
activity (Marder and Thirumalai, 2002). Network activity is often
conditional on the presence of neuromodulators, which are typ-
ically released as circulating hormones or by modulatory projec-
tion neurons. An extreme example of neuromodulator-
dependent changes in network state is reflected in the different
states of the brain during wakefulness and different stages of sleep
(Giocomo and Hasselmo, 2007). In particular, it has been sug-
gested that REM sleep and wakefulness are functionally equiva-
lent in activity patterns but differ in aminergic and cholinergic
modulatory states (Llinás and Ribary, 1993; Kahn et al., 1997).

Much of our understanding of the network-level effects of
neuromodulation comes from the studies of invertebrate net-
works, in particular, central pattern generators (CPGs) underly-
ing rhythmic movements (Dickinson, 2006). Here we give an
example of how neuromodulation can affect the state of a CPG
network and, as a result, the mechanisms underlying pattern gen-
eration in the network. Recent studies in an invertebrate CPG, the
crustacean gastric mill network, show that the neuromodulatory
state of the network can change the mechanism through which
network oscillations are produced without affecting the charac-
teristics of the oscillations such as cycle frequency and the relative
phases of the component neurons. As a consequence, in these
different network states, network activity remains similar, yet the
locus of control of the network activity is different.

The activation of the gastric mill CPG in the crab stomatogas-
tric ganglion (STG) is controlled by activity of descending pro-
jections to the STG. Identified projection neurons release neuro-
modulatory substances and interact with the target circuit
neurons to elicit the rhythmic oscillations (Nusbaum et al., 2001;
Nusbaum and Beenhakker, 2002). At the heart of the gastric mill
CPG is a half-center oscillator comprised of two reciprocally in-
hibitory neurons, LG and Int1. In the absence of the rhythm, the
LG neuron is silent, whereas Int1 is active. Previous experimental
and modeling work has shown that the gastric mill rhythm elic-
ited by the projection neuron MCN1 depends crucially on pre-
synaptic inhibition of the MCN1 axon terminals by the LG neu-
ron (Coleman et al., 1995; Nadim et al., 1998). Without the
presynaptic inhibition, oscillations break down. Bath application
of the modulatory neuropeptide pyrokinin (PK) elicits a similar
gastric mill oscillation but without MCN1 participation (Saide-
man et al., 2007a,b). PK is not released by MCN1, and it is the first
known neuromodulator to elicit a gastric mill oscillation when
bath applied to the crab STG. Although the mechanism that un-
derlies the PK-elicited oscillation is unknown, a recent modeling
analysis of the gastric mill network suggests three distinct ionic
mechanisms, all depending on the modulation of the LG neuron
by PK (Kintos et al., 2008). All three mechanisms result in the
ability of the LG neuron to produce plateau potentials and, using
phase plane analysis, it is possible to show that plateau potentials
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in the LG neuron result in oscillations that are qualitatively equiv-
alent to the MCN1-elicited gastric mill oscillation.

The similarity between the PK- and MCN1-elicited oscilla-
tions raises the question as to the importance of the presynaptic
inhibition in the presence of PK. Recent experiments show that
PK can modulate the MCN1-elicited oscillations at low concen-
trations at which it cannot elicit a rhythm by itself (M. P. Nus-
baum, personal communication). Mathematical analysis and
computational modeling can be used to examine the role of the
presynaptic inhibition in the presence of the neuromodulator
PK. The results indicate that, depending on the strength of the
modulation by PK, the MCN1-elicited oscillations can switch
between modes that depend on the presynaptic inhibition (Fig.
1A) or are independent of it (Fig. 1B). At intermediate strengths,
oscillations persist in the absence of either PK or the presynaptic
inhibition, but not both.

These interactions provide an interesting example of network
states in which the generation and control of oscillations can
switch between distinct mechanisms depending on the level of
the neuromodulator’s actions (e.g., depending on its concentra-
tion), yet the characteristics of the oscillations remain un-
changed. As a result, sensory, coordinating, or additional modu-
latory inputs to the network (Beenhakker et al., 2005; Blitz et al.,
2008) may have distinct actions on these two seemingly indistin-
guishable states.

Network states and sensory perception
Sensory perception can be significantly altered by behavioral
states including attention, hunger, and social status. These behav-
ioral states have been shown in many instances to affect network
states in early sensory processing via central feedback and neuro-
modulatory inputs from other brain areas (McClurkin et al.,
1994; Wörgötter et al., 2002; Alitto and Usrey, 2003; Kiselycznyk
et al., 2006; Gilbert and Sigman, 2007). The olfactory bulb (OB),
a cortical sensory area receiving direct input from sensory neu-
rons without relay through the thalamus, lends itself particularly
well to investigations of the relationship between network and
behavioral states and the resulting changes in sensory perception
(Cleland and Linster, 2005; Kiselycznyk et al., 2006). A recent
study by Beshel et al. (2007), for example, showed for the first
time that behavioral task demands can modulate oscillatory pro-
cesses in the OB, strengthening the idea that oscillations and the
underlying neural circuitry may reflect network states that di-
rectly affect odor perception (Cleland and Linster, 2002; Kay,
2003; Cleland and Linster, 2005). These results are in good agree-
ment with previous work in honeybees and mice showing that
perceptual changes accompany changes in oscillatory dynamics
in the olfactory system (Stopfer et al., 1997; Laurent et al., 2001;
Kay and Stopfer, 2006).

Recent computational modeling illustrates the mechanisms
through which network state is altered and how this alteration

Figure 1. A, B, Neuromodulation of the crustacean gastric mill CPG network states. Computational modeling shows that neuromodulation (by the peptide PK) of the gastric mill rhythm elicited
by the projection neuron MCN1 can result in little qualitative change in network output (top traces). Yet, in contrast to the unmodulated or weakly modulated state (A), the generation of network
oscillations in the strongly modulated state (B) does not depend on presynaptic inhibition of the axon terminals of the projection neuron MCN1 (bottom traces). Models modified from Kintos et al.
(2008).
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affects perception. Models of the honeybee
antennal lobe, the analog to the mamma-
lian OB, show that oscillatory dynamics
and accompanying changes in spike syn-
chrony among antennal lobe output neu-
rons alone, independent of changes in
overall spike rate, can modulate odor dis-
crimination when paired with a Hebbian
learning rule (Linster and Cleland, 2001).
Furthermore, modulation of synchrony
alone can replicate behaviorally observed
changes in odor discrimination at differ-
ent stimulus intensities (Cleland and Lin-
ster, 2002). These computational results in
this system clearly show a correlation be-
tween odor discrimination and network
state. The dynamic state of the network is
regulated by extrinsic factors such as stim-
ulus concentration, amounts of dopamine
conveyed by neuromodulatory neurons,
and intrinsic factors such as synaptic effi-
cacy, voltage-dependent intrinsic cur-
rents, and short-term plasticity, as has
been shown experimentally (Stopfer et al.,
1997, 2003; Stopfer and Laurent, 1999;
Friedrich and Stopfer, 2001; Brown et al.,
2005).

In the rodent OB, network state is in-
fluenced by sensory inputs from the nose,
centrifugal inputs from other brain areas,
as well as short- and long-term synaptic
plasticity and changes in neuronal survival
affecting bulbar processing (for review, see
Cleland and Linster, 2005; Kay and
Stopfer, 2006). All of these changes have
been shown to directly affect odor percep-
tion in rodents. First, perceptual similari-
ties of odor pairs are highly correlated with
similarities among activity patterns
evoked in the OB input layer (Linster and
Hasselmo, 1999; Linster et al., 2001b; Ru-
bin and Katz, 2001; Cleland et al., 2002;
Youngentob et al., 2006). Second, modu-
lation of these patterns by cholinergic in-
puts to the OB in a computational model
predicts perceptual changes confirmed by

Figure 2. Large scale modeling of olfactory bulb network state. A, Schematic illustration of the model. Olfactory sensory
neurons (OSN), responding to odor input in a distributed manner, each project to one glomerulus (Glom), in which they make
excitatory synapses with olfactory bulb output neurons [mitral cells (Mi)] and diverse local interneurons (not shown). Each mitral
cell receives sensory input from a single class of OSNs within a given glomerulus. Mitral cells have extensive lateral dendrites
through which they form reciprocal synaptic connections with inhibitory interneurons [granule cells (Gr)]. Mitral cell axons project

4

onto a large number of secondary olfactory structures. Based
on data from brain slice experiments, synaptic plasticity was
implemented on excitatory synapses between OSNs and mi-
tral cells as well as between mitral and granule cells (arrows).
B, Simulation results showing the membrane potential and
action potentials of a subset of mitral cells in response to stim-
ulation with two odors A and B, before and after simulated
exposure to odor A. Note the sparsening of mitral cell re-
sponses to odorants accompanied by increased oscillatory dy-
namics and synchrony among individual mitral cells. C, Syn-
aptic plasticity in the model leads to stronger inputs to mitral
cells (red arrow) because of increased synaptic efficacy as well
as a stronger feedback loop (blue arrow) between mitral and
granule cells. Together, these changes enhance the oscillatory
power (gray arrow) of the excitatory-inhibitory feedback loop
formed by the mitral/granule cell reciprocal synapse.

Nadim et al. • State Dependence of Network Output J. Neurosci., November 12, 2008 • 28(46):11806 –11813 • 11809



behavioral lesion and pharmacological experiments (Linster
et al., 2001a; Linster and Cleland, 2002; Mandairon et al.,
2006d). Third, recent experiments have shown that manipu-
lations that change the state of the bulbar network, for exam-
ple, direct local infusion of NMDA, significantly affect odor
perception (Mandairon et al., 2006b). Fourth, olfactory expe-
rience has been shown to modulate the survival of newborn
cells in the OB. Given that these cells are inhibitory interneu-
rons known to be involved in regulation of response curves
and dynamics, these results also establish a clear relationship
between network state and perception (Rochefort et al., 2002;
Lledo and Saghatelyan, 2005).

Recent experiments show that daily experience with odor-
ants significantly affects the rat’s ability to discriminate be-
tween chemically and perceptually very similar odorants
(Mandairon et al., 2006a,c; Escanilla et al., 2008). Interest-
ingly, similar effects can be obtained by manipulation of OB
processing by replacing experience with odorants with daily
injections of NMDA, thought to mimic activation of OB neu-
rons by odorants (Mandairon et al., 2006b). Furthermore,
activation of NMDA receptors is necessary for perceptual
changes to occur with experience with odorants, and respon-
siveness of local interneurons, as measured with immediate-
early gene mapping, is significantly increased in animals with
daily odor experience compared with control animals (Man-
dairon et al., 2006b, 2008). Computational modeling shows
that NMDA-dependent plasticity, implemented on olfactory
sensory neuron-to-mitral and mitral-to-granule cell synapses
(Ennis et al., 1998; Satou et al., 2005, 2006) during odor expo-
sure times, results in increased activation of mitral cells as well
as increased interneuron responsiveness to odorants (Fig.
2 A, B). The resulting increased inhibition changes the network
state and its response to sensory inputs in two ways. First,
mitral cell odor responses become sparse and the overlap be-
tween neurons responsive to chemically similar odorants is
reduced. Second, oscillatory dynamics and the accompanying
synchrony among olfactory neurons is increased because of
the increased efficacy of the excitatory-inhibitory feedback
loop between mitral and granule cells (Fig. 2C). Both effects
potentially contribute to the enhanced perceptual discrimina-
tion measured behaviorally. These studies show how experi-
ence with odorants can affect network state, sensory process-
ing, and perception on long time scales (up to 3 weeks). OB
network states can also be affected on short time scales by
cholinergic, noradrenergic, and other centrifugal inputs, lead-
ing to changes in odor perception and learning.

History dependence of the network state
In the most interesting cases, the network state is strongly driven
by its own internal dynamics and, consequently, the present state
can depend strongly on its own history. Inputs to the network do
not produce outputs in any simple manner, but are better
thought of as perturbing the trajectory of the network state,
which produces the outputs, thereby “interpreting” the inputs
depending on the history (Beer, 1995, 1997). Concepts of this
kind are applicable in sensory processing (Fontanini and Katz,
2008), perception (Engel et al., 2001), attention (Deco and Rolls,
2005), and motor control, in which controllers are often viewed
as incorporating internal models that, for example, continually
evaluate the error between the predicted and the actual sensory
stimuli that are received as feedback as the behavior is executed
(Kawato, 1999; Bays and Wolpert, 2007). Most such systems,
however, are complex, and many important components are un-

known. For our final example, we describe a simple system in
which the basic principles can already be seen, studied at a variety
of levels both experimentally and computationally, and readily
connected to the functional behavior of the animal.

The sea slug Aplysia eats seaweed, often in the form of long
fronds or strips, in a cyclical, rhythmic manner, incrementally
swallowing one short segment of the strip after another (Kup-
fermann, 1974; Morton and Chiel, 1993; Lum et al., 2005). At
the core of the feeding system is a multitasking CPG that
produces motor programs that underlie this ingestive behav-
ior as well as an egestive behavior: a reversal of the phasing of
the feeding movements so that seaweed or other material that
has been swallowed but is then judged inedible is incremen-
tally expelled (Fig. 3A). The CPG does not cycle spontane-
ously: each cycle must be triggered by sensory stimuli. Because
these stimuli are signals that seaweed is present or, conversely,
that inedible material has been swallowed, one might expect
that they would trigger either an ingestive or egestive motor
program. However, such a direct response is not produced.
Rather, as first observed by Proekt et al. (2004), the state of the
CPG network mediates the response. The sensory stimuli act
through the dynamics of the CPG to influence the evolution of
the network state, but it is the state of the network at any
moment that determines the type of motor program that is
produced.

The dynamics of the CPG are for the most part slow (Proekt et
al., 2004; Zhurov et al., 2005). They integrate the incoming stim-
uli over multiple cycles so that the character of the motor pro-
grams progressively evolves in the ingestive direction with re-
peated ingestive stimuli, and in the egestive direction with
repeated egestive stimuli (Fig. 3C1,2). Furthermore, after a switch
from egestive to ingestive stimuli, the programs exhibit inertia:
they remain egestive for some time (Fig. 3C4). After the converse
switch from ingestive to egestive stimuli, however, there is no
inertia: the programs become egestive immediately (Fig. 3C3).
This one component of fast dynamics in the system thus creates
an asymmetry in the response depending on the order of the
ingestive and egestive stimuli—an asymmetry that plays an im-
portant role in the behavior (see below). Within the CPG, the
dynamics are created by such mechanisms as activity-dependent
plasticity at synapses between neurons that represent, and in
some cases are specifically recruited by, the type of stimulus
and/or response (Proekt et al., 2004, 2007; Sasaki et al., 2008).
Activity-dependent release of slowly acting modulatory neu-
ropeptide cotransmitters from many of the CPG neurons proba-
bly also plays an important role, so that the network state may in
part be the result of its modulatory state (Morgan et al., 2002; Jing
et al., 2007).

Similar mechanisms operate simultaneously in the periph-
eral musculature of the feeding system. When the motor neu-
rons that drive the feeding muscles become active, they also
release modulatory cotransmitters that modify the muscle
contractions (Weiss et al., 1992; Brezina et al., 1996, 2000).
These modulatory actions, too, have both slow and fast com-
ponents. From extensive biophysical and physiological data
available in this system, these dynamics have been captured in
realistic models (Brezina et al., 2003a,b). Computational sim-
ulations and theoretical analysis of these models under various
behavioral circumstances (Brezina et al., 2005) suggest that
the modulatory dynamics likewise constitute a network, albeit
a non-neural one, with its own state, its own memory of the
history of the feeding system, and its own dynamic computa-
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tional capabilities, in conjunction with which those of the
CPG must act to execute functional feeding movements.

What behavioral functions are in fact performed by the
dynamics in this system? In the field of computational neuro-
ethology, it has been argued (for example, by Chiel and Beer,
1997) that adaptive behavior is ultimately a product of the
entire dynamic system of the nervous system, the non-neural
structures of the body, and the environment. This suggests the
computational approach of running a model embodying the
observed CPG and neuromuscular dynamics—in effect, an
autonomous Aplysia agent—in various simulated feeding en-
vironments and analyzing the performance of the entire sys-
tem in a realistic feeding task. The results show that the slow
integrative CPG dynamics, which conservatively produce mo-
tor programs similar to preceding ones, allow efficient inges-
tion of long seaweed strips even in the face of considerable
noise from sensory inputs and other uncertainties resulting
from the true state of the environment. If, however, even a
brief egestive stimulus is received, signaling that the ingested
seaweed strip may be inedible, the fast component of the CPG
dynamics triggers a rapid switch to a different mode, in which

the system transiently ignores the in-
coming stimuli and follows an internal
“goal,” emergent from the dynamics, to
egest the entire strip again (see red rect-
angle in Fig. 3C). This goal-driven eges-
tion has the properties of a reflex or
fixed-action pattern, and generally re-
sembles vertebrate regurgitation or
vomiting behavior, which may also be
driven by a CPG-like neural network
(Hornby, 2001; Horn, 2008). The time
scales of the dynamics are tuned for op-
timal performance over a range of envi-
ronmental parameters (Fig. 3B) that cor-
responds well to those that Aplysia
encounter in the wild and in which the
observed CPG and neuromuscular inter-
actions have presumably evolved.

The network state of the Aplysia feed-
ing CPG, together with that of the periph-
eral musculature, is thus able to interpret
incoming sensory information in light of
the past experience and the current func-
tional goals of the animal to produce the
optimal behavioral output. Operationally,
the state of Aplysia feeding CPG has been
described as a “predictive,” “expecta-
tional,” or “intentional” internal state
(Proekt et al., 2004). If performed by the
mammalian CNS, these would be consid-
ered cognitive functions. Yet here they are
performed by a simple motor network.
Numerous parallels can indeed be drawn
between mammalian cortical circuits and
CPGs (Yuste et al., 2005), and it is possible
that the implementation of high-level cog-
nitive functions, even in mammals, is to
some degree distributed throughout the
nervous system, including its low-level cir-
cuits, and even non-neural structures that
are involved in behavior (Clark, 1997, 2000).

Concluding remarks
As our four examples suggest, the network state can be consid-
ered from a bottom-up or a top-down perspective, from the
viewpoint of mechanism or of function. Often, the two go hand-
in-hand. In three of our examples, mechanisms that change the
network state (stochastic or oscillatory neuronal activity, synap-
tic plasticity, neuromodulation) are at least partially identified
and the changes in network state are easily recognized. At the
same time, it is possible to observe some of the functional conse-
quences for the input-output processing performed by the net-
work. In the crab STG example, however, the internal configura-
tion of the network, and therefore the network state, changes with
neuromodulation, yet the observed activity of the network re-
mains unchanged. Although this may represent redundancy in
network output, it is more likely that the change in network state
may be read out in other parameters, or alter the effect of addi-
tional (e.g., sensory or coordinating) inputs to the network. Con-
versely, in the Aplysia feeding example, the functional approach
predominates. The similarity in dynamics and input-output
transformations suggests that, despite different intrinsic mecha-
nisms in different neural networks, internally generated states

Figure 3. Feeding CPG dynamics and behavior in Aplysia. A, Aplysia in a feeding posture. The ingestive and egestive arrows
indicate movement of the seaweed strip into and out of the mouth of the animal, respectively. Adapted from Lum et al. (2005). B,
Functional performance of a computational model of the feeding CPG dynamics shown in C in a simulated feeding task modeled
on the behavior in A, plotted over a range of two basic parameters of a simulated feeding environment: the length scale of the
environment (the average length of the seaweed strips present in the environment) and the certainty with which the feeding
stimuli in the environment can actually be detected. Warm colors indicate good performance, cool colors, poor performance. C,
Diagram of the dynamics of the feeding CPG as quantified by Proekt et al. (2004). Discrete motor programs are not represented;
rather, the underlying evolution of their ingestive-egestive character is indicated by a time-continuous variable, the “feeding
behavior.” The red rectangle indicates a period during which, in the behavioral simulations described in the text, the model would
perform goal-driven egestion, that is, egestion despite an ingestive stimulus.
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and external inputs interact through similar principles. However,
many of these principles remain to be characterized through
modeling and experiments.
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